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A B S T R A C T

Image saliency detection has recently achieved great success due to the development of deep convolutional
neural networks. However, most of the existing salient object detection methods cannot identify individual
object instances in the detected salient region. In this paper, we present a salient instance segmentation
method that produces a saliency map with distinct object instance labels for an input image. Our method
consists of three primary steps, i.e., salient region inference, salient object contours detection, and salient
object instances identification. For the first two steps, we propose a multiscale saliency refinement network,
which generates high-quality salient region masks and salient object contours. For the last step, we propose
a morphology algorithm that incorporates detected salient regions and salient object contours to generate
promising salient object instance segmentation results. To promote further research and evaluation of salient
instance segmentation, we also construct a new database (ILSO-2K) of 2,000 images with pixel-wise salient
instance annotations. Experimental results demonstrate that our proposed method is capable of achieving
satisfactory performance over six public benchmarks for salient region detection as well as on our new
dataset for salient instance segmentation. The source code and proposed dataset will be public available at
https://github.com/Kinpzz/MSRNet-CVIU.
. Introduction

Salient object detection aims at locating the most noticeable and
isually distinctive object regions in images and segmenting them
ut from the background. Since the results of salient object detection
an reflect the relative importance of visual contents in an image,
hey can be used to narrow the scope of visual processing and lower
omputational cost. As a result, it usually serves as a pre-processing step
nd has been applied to a variety of computer vision applications to
mprove their performance. These applications include action recogni-
ion (Rutishauser et al., 2004), video summarization (Ma et al., 2005),
bject detection (Navalpakkam and Itti, 2006), robotic perception (Sug-
no et al., 2010), visual tracking (Wu et al., 2014), image retrieval (Gao
t al., 2015), semantic segmentation (Wei et al., 2017), saliency-aware
ideo segmentation (Wang et al., 2017c), photo cropping (Wang et al.,
018a), etc.

In recent years, with the development of deep convolutional neural
etworks, the performance of salient object detection has been im-
roved by a large margin (Liu and Han, 2016; Hou et al., 2017; Deng
t al., 2018; Wang et al., 2018b; Wu et al., 2019a). Nevertheless, for
n input image, most of the existing methods are only designed to
etect pixels that belong to any salient object, i.e., a dense saliency
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map, but unaware of which object instance these pixels belong to.
According to Zhang et al. (2016), we refer to the task performed by
these methods ‘‘salient region detection". As shown in Fig. 1, we address
a more challenging task, instance-level salient object segmentation (or
salient instance segmentation for short), which aims to identify individual
object instances in the detected salient regions. To achieve this goal, the
next generation of salient object detection methods need to perform
more detailed parsing within the detected salient regions, which is
of great significance for practical applications, such as multi-label
image recognition (Wei et al., 2016), image captioning (Karpathy and
Fei-Fei, 2015), various weakly supervised or unsupervised learning
scenarios (Lai and Gong, 2016; Chen and Gupta, 2015).

In this paper, we propose to decompose the salient instance seg-
mentation task into three sub-tasks as follows. (1) Estimating a binary
saliency map. In this sub-task, a pixel-wise saliency mask is predicted to
indicate the detected salient regions in the input image. (2) Detecting
salient object contours. In this sub-task, we perform contour detec-
tion for individual salient object instances. Different from traditional
edge detection (Movahedi and Elder, 2010), such contour detection is
expected to highlight the salient object contours but suppress edges
that do not belong to boundaries of any salient object instances. (3)
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Fig. 1. An example of instance-level salient object segmentation. Left: input image.
Middle left: detected salient region. Middle: detected salient object contour. Middle
right: salient object proposals. Right: the result of salient instance segmentation.
Different colors indicate different object instances in the detected salient region. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Identifying salient object instances. In this sub-task, we incorporate
detected salient region and salient object contours to generate salient
object instances. Finally, a further refinement based on CRF (Krähen-
bühl and Koltun, 2011) is employed to improve the spatial coherence of
salient instance proposals and generate an instance-level salient object
segmentation map.

Several recent salient region detection methods (Li and Yu, 2016;
Liu and Han, 2016; Wang et al., 2016a) are based on fully convolutional
neural networks (FCNs) as FCNs can be trained end-to-end with high-
efficiency to produce accurate results. However, they still have their
own limitations. Most of these methods learn to infer saliency by
exploring the features of multilevel convolutional layers (Wang et al.,
2016a; Liu and Han, 2016). As their results are derived from receptive
fields of a uniform size, they may not perform well on detecting
salient objects at multiple scales. Though Li and Yu (2016) proposed to
combine a multiscale FCN and a segment-level spatial pooling stream
to compensate for this deficiency, their iterative training process is
complex and time consuming since the end-to-end training only covers
the first stream but not the second one. Moreover, the resolution of
their final saliency map is only 1∕8 of the original input resolution,
making it infeasible to detect small salient objects accurately or be
applied to salient object contour detection.

Given the sub-tasks as mentioned above for salient instance seg-
mentation, we propose a deep multiscale saliency refinement network,
which can generate promising results for both salient region detection
and salient object contour detection. Specifically, our deep network
consists of three major components, including a bottom-up backbone
network for feature extraction, an ASPP (Chen et al., 2017) module
with attentional weights for multiscale feature fusion, and a top-down
stream for feature refinement. It is designed to integrate the low-level
information from the bottom-up network and high-level information
from the top-down stream. The high-level information contains more
semantic knowledge but lacks spatial details, while the low-level infor-
mation retains more spatial details with higher resolution. Therefore,
such information integration is of great benefit for pixel-wise segmen-
tation tasks including both salient region detection and salient object
contour detection.

Given the detected salient regions, we incorporate the detected
contours of salient object instances to generate a number of salient
instance proposals. Although the detected salient regions and salient
object contours are of high quality, the generated salient instance
proposals are still noisy. We then filter out these noisy proposals and
produce a compact set of segmented salient object instances. Finally, a
fully connected CRF model (Krähenbühl and Koltun, 2011) is further
employed to improve spatial coherence in the initial salient instance
segmentation.

In summary, this paper has the following contributions:

• We introduce a fully convolutional multiscale refinement net-
work (MSRNet), for salient region detection, which can not only
integrate bottom-up and top-down information for high-precision
saliency inference but also attentionally combine multiscale fea-
tures to discover salient object at multiple scales. Experimental
2

results demonstrate that the proposed network can achieve sat-
isfactory performance on salient region detection without any
pre-/post-processing.

• MSRNet is well applicable to salient object contour detection,
making it possible to separate individual salient object instances
in detected salient regions. When further incorporated with CRF-
based refinement, our method can generate salient instance maps
of high-quality.

• We create a new challenging dataset with pixel-wise salient in-
stance annotations for further research and evaluation of salient
instance segmentation. Benchmark results for salient contour de-
tection and salient instance segmentation are both provided using
a framework based on MSRNet.

This paper is an extended version of Li et al. (2017), it provides
a reformative framework based on a multiscale refinement network
for salient instance segmentation including a more complete intro-
duction and analysis. Specifically, for multiscale refinement network,
we propose to exploit the multiscale information in feature level and
attentively combine the multiscale features instead of using multiple
input sizes in duplicated refinement networks. For salient instance
proposal, we propose to utilize both detected salient regions and salient
object contours to better generate salient instance proposals instead
of using only salient object contour. Moreover, we have extended the
scale of the dataset for salient instance segmentation by introducing
more challenging images with pixel-wise instance saliency annotations.
Experimental results show that the redesigned framework achieves
superior performance with faster speed on salient region detection,
salient object contour detection, and salient instance segmentation.

The remainder of this paper is organized as follows. Section 2
reviews the works that are most relevant to our proposed method.
Section 3 introduces the framework for instance-level salient object
segmentation, including our proposed MSRNet. Section 4 presents the
construction of the new dataset (ILSO-2K) for salient instance segmen-
tation. Extensive experimental comparisons are presented in Section 5.
Finally, Section 6 makes a conclusion to this paper.

2. Related work

In this section, we mainly focus on discussing works on the topics
that are most relevant to our proposed method.

2.1. Salient region detection

Conventional salient region detection methods generally rely on
various hand-crafted features, such as contrast (Cheng et al., 2015),
background (Wang et al., 2016b), center prior (Klein and Frintrop,
2011), and so on (Liu et al., 2011; Goferman et al., 2012; Li et al.,
2014; Huo et al., 2017).

Recently, the development of deep convolutional neural networks
(DCNNs) has brought tremendous improvement to many vision tasks,
including salient region detection (Li and Yu, 2015; Zhao et al., 2015;
Lee et al., 2016; Li and Yu, 2016; Liu and Han, 2016; Wang et al.,
2016a). In particular, these methods based on fully convolutional neu-
ral network (FCN) (Zhang et al., 2017a,b; Wang et al., 2017a; Hou
et al., 2017; Chen et al., 2018; Deng et al., 2018; Zhang et al., 2018;
Wang et al., 2018b, 2019b; Wu et al., 2019a; Zeng et al., 2019; Wang
et al., 2019c) has become the dominant methods in this field due to
the end-to-end trainable capability and high computational efficiency
of FCN. Liu and Han (2016) proposed an end-to-end deep hierarchical
saliency network to generate a coarse saliency map and a hierarchical
recurrent convolutional neural network for further refinement. It does
not rely on image segmentation and can produce a saliency map by di-
rectly feedforwarding testing images through the network. Wang et al.
(2016a) proposed another end-to-end recurrent fully convolutional
network for salient region detection. Their deep network incorporates
saliency prior knowledge for more accurate inference through iterative
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c

Fig. 2. Our overall framework for instance-level salient object segmentation. It consists of a multiscale refinement network (MSRNet) for salient region detection and salient object
ontour detection, a morphology algorithm for salient instance proposal generation, and a CRF-based refinement for salient instance segmentation.
Fig. 3. The architecture of our multiscale refinement network (MSRNet) for salient
region detection and salient object contour detection.

refinement with a recurrent network structure. Hou et al. (2017) intro-
duced short connections between the deeper and shallower side-output
layers of FCN-based salient region detection networks. This architecture
takes full advantage of multilevel and multiscale features and thus helps
better locate the most salient region. Wang et al. (2018b) proposed
a novel localization-to-refinement architecture for salient region de-
tection, which consists of a global recurrent localization network to
locate salient objects and a local boundary refinement network to refine
the salient region by the spatial relationships between each pixel and
its neighbors. Wang et al. (2019b) proposed a unified salient region
detection framework that integrates both top-down and bottom-up
saliency inference in an iterative and cooperative manner. Wang et al.
(2019c) proposed to learn salient object detection from eye fixations
through a novel attentive saliency network. Wei et al. (2020) proposed
a label decoupling network to decompose the original saliency maps
into body maps and detail maps and they were further used to supervise
the learning of body and detail futures of salient objects. By fusing
the body and detail futures, the proposed network can generate precise
saliency maps.

More recently, some researchers proposed better solutions to in-
tegrate edge detection into the unified framework of salient object
detection to assist the generation of saliency maps (Qin et al., 2019;
Liu et al., 2019a; Wu et al., 2019a; Feng et al., 2019; Wu et al.,
3

2019b; Zhao et al., 2019; Wang et al., 2019d). Qin et al. (2019)
designed a hybrid loss for boundary-aware salient object detection on
pixel-level, patch-level, and map-level. Liu et al. (2019a) proposed
a simple pooling-based module and feature aggregation module for
jointly training salient object detection with standard edge detection.
Feng et al. (2019) proposed the attentive feedback modules to better
explore the structure of salient objects and a boundary-enhanced loss
to further learn exquisite object boundaries. Wu et al. (2019b) proposed
a stacking cross refinement unit to simultaneously refine multi-level
features of salient object detection and edge detection. Wang et al.
(2019d) proposed to learn saliency from multiscale information by
combining a pyramid attention module and a salient edge detection
module. Zhao et al. (2019) proposed a edge-guided network to model
the complementarity between salient edge information and salient
object information. Since the better integration of edge information,
these methods usually show better performance on salient object de-
tection, especially around salient object boundaries. Moreover, a more
comprehensive survey about those DCNN-based salient object detection
methods can be found in Wang et al. (2019a).

2.2. Instance-aware semantic segmentation

Instance-aware semantic segmentation is a challenging problem
related to both object detection and semantic segmentation. It requires
not only to correctly detect all objects in an image but also to segment
each instance accurately. This problem was first raised by Hariharan
et al. (2014) and has been extensively studied in recent years. Overall,
it can be solved in an end-to-end integrated model (Romera-Paredes
and Torr, 2016; Dai et al., 2016a; Wang et al., 2020) or formulated as
a multi-task learning problem incorporating both object detection and
semantic segmentation (Dai et al., 2016b; He et al., 2017; Chen et al.,
2020).

Inspired by this problem, we were the first to propose the new task,
salient instance segmentation, in our preliminary work (Li et al., 2017).
Salient instance segmentation aims at simultaneously detecting the
most salient regions and identifying each salient instance inside them. It
is a more generic but meanwhile more challenging problem compared
with instance-aware semantic segmentation since salient objects are not
associated with any predefined set of semantic categories. We believe
solutions to such generic problems are more valuable in practice as
it is infeasible to enumerate all object categories and prepare enough
pixel-wise training data for each category.

2.3. Relation to previous methods

Different from those edge-assisted SOD methods mentioned in Sec-
tion 2.1, our redesigned MSRNet is a refined version of our conference
MRNet (Li et al., 2017), which aims at promoting the saliency details
by introducing the low-level features into high-level ones via a novel
refinement architecture. MSRNet is well applicable for salient object

contour detection but it does not directly integrate the edge information
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Fig. 4. The architecture of ASPP with attention module.

o assist the salient region detection. The detected contours of salient in-
tances are mainly designed to assist the salient instance segmentation
art.

Moreover, since we proposed the salient instance segmentation task
n our preliminary work (Li et al., 2017), several solutions (Fan et al.,
019b; Pei et al., 2020) have been proposed to solve this challenging
ask. (Fan et al., 2019b) proposed a single-stage salient framework
ased on a detection network with a novel segmentation branch, which
urther considers the context of bounding boxes. Pei et al. (2020)
roposed a multitask network to simultaneously perform salient object
ubitizing (Zhang et al., 2015) and salient region detection. Then a clus-
ering algorithm was further designed to segment the detected salient
egions into salient instances based on subitizing. Fan et al. (2019a)
roposed an instance-aware video salient object detection datasets with
eal human eye-fixation data, which further promoted the development
f instance-level salient object detection.

. Salient instance segmentation

In this section, we introduce the overall framework for instance-
evel salient object segmentation and then elaborate on the details of
ach component of the framework.

.1. Overall framework

As shown in Fig. 2, the architecture of our framework for salient
nstance segmentation consists of four cascaded components, includ-
ng salient region detection, salient object contour detection, salient
nstance proposal generation, and salient instance refinement. Specifi-
ally, we first propose a FCN-based multiscale refinement network and
pply it for both salient region and contour detection (Section 3.2).
ased on the detected salient regions and contours, we then generate
alient instance proposals using a morphology algorithm (Section 3.3).
inally, we integrate the output of the previous three steps into a
RF (Krähenbühl and Koltun, 2011) model to generate the final salient

nstance segmentation (Section 3.4).

.2. Multiscale refinement network

We formulate both salient region detection and salient object con-
our detection as a binary segmentation problem and calculate the
robability of salient region/contour for each pixel. FCNs have been
idely used in pixel-wise segmentation problems and have achieved
reat success in salient region detection (Li and Yu, 2016; Hou et al.,
017; Wang et al., 2018b, 2019b) and object contour detection (Xie
nd Tu, 2015; Yang et al., 2016; Liu et al., 2017). However, when we
irst proposed salient instance segmentation in our preliminary work (Li
t al., 2017), none of the existing methods had attempted to address
hese two problems in a unified network at that time. Since salient ob-
ects have different scales, we propose a multiscale refinement network
MSRNet) for both salient region detection and salient object contour
4

Fig. 5. The architecture of our refinement module.

detection. In the earlier version of this paper, we proposed to use three
parallel networks with shared weights to extract features from images
with different input scales. Although this scheme can effectively extract
features from different scales, it trebles the computational cost. In this
paper, we propose a more efficient and effective method to detect
salient objects at multiple scales. As shown in Fig. 3, we first adopt
a backbone network (Section 3.2.1) with an attentional atrous spatial
pyramid pooling (ASPP) (Chen et al., 2017) module (Section 3.2.2)
to capture multiscale features by resampling convolutional features
extracted at a single scale into multiple scales. Moreover, we use a top-
down refinement stream to progressively recover the spatial resolution
from the bottom-up backbone network (Section 3.2.3).

3.2.1. Bottom-up backbone network
As shown in Fig. 3, we modify the ResNet-50 (He et al., 2016)

into a fully convolutional network, which serves as our bottom-up
backbone network for feature extraction. Specifically, we use the first
five groups of layers of ResNet-50 (i.e., conv1, conv2_x, . . . , conv5_x)
leaving out the following average pooling layer and fully connected
layer. Moreover, we modify the stride of the convolutional layers in
conv5_x to (1, 1) to make the bottom-up feature map denser and set its
dilation rate to 2 to retain the original receptive field of the filters. Thus,
the bottom-up backbone network extracts high-level features with a
1∕16 resolution of the original input image.

3.2.2. Multiscale feature fusion with attentional weights
As ASPP (Chen et al., 2017) is a practical module to capture

multiscale information using parallel atrous convolutional layers with
different dilation rates, we attach an ASPP on the top of our bottom-
up backbone network to capture and fuse the features extracted with
different field-of-views using attentional weights. The ASPP module
consists of four parallel components, including a 1 × 1 convolutional
layer, and three 3 × 3 atrous convolutional layers with 𝑟𝑎𝑡𝑒 = {6, 12, 18},
and a global average pooling layer. Element-wise multiplication is fur-
ther performed between the output feature map of each convolutional
layer in ASPP and its attentional weights since attentional weights
can reflect how much attention should be paid to features at different
spatial locations and different scales.

As shown in Fig. 4, the attention module takes as input the output
feature map of the bottom-up backbone network. The attention module
consists of four parallel 3 × 3 convolutional layers with 256 channels,
each of which generates attentional weights for each parallel convo-
lutional layer in ASPP. Therefore, the attention module learns a soft
weight for each spatial location and each scale of features. Finally, the
output feature maps at different scales are concatenated and fed into a
1 × 1 convolutional layer with 256 channels to fuse feature at multiple
scales and produce a new feature map 𝐹 1

𝑡𝑑 for the top-down refinement
stream shown in Fig. 3.

3.2.3. Top-down refinement stream
Although the bottom-up backbone network can effectively extract

high-level features and the multiscale feature fusion can efficiently
exploit the features of salient objects at multiple scales, these processes
also bring spatial information loss for input images, which is harmful

to pixel-wise segmentation tasks, such as the considered salient region
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detection and salient object contour detection. To compensate for the
loss of spatial information in the bottom-up process, high-level seg-
mentation features need to be passed from the top layers and further
integrate with low-level cues, such as colors and textures, to restore the
resolution of output saliency maps for both salient region and salient
object contour detection.

Inspired by Pinheiro et al. (2016), we propose a refinement module
𝑅 to combine the high-level features with the low-level cues connected
from the bottom-up stream and increase the resolution of the high-level
feature map when necessary. As shown in Fig. 3, the refinement stream
consists of three stacked refinement modules, which are respectively
connected to conv2_x, conv3_x, and conv4_x through a skip connection
layer. As shown in Fig. 5, each refinement module 𝑅𝑖 takes as input
the output feature map 𝐹 𝑖

𝑡𝑑 of the previous refinement module in the
top-down stream along with the output feature map 𝐹 𝑖

𝑏𝑢 of the skip
onnection layer attached to the corresponding layer in the bottom-
p network. It learns to combine the information from these inputs
o produce a new feature map 𝐹 𝑖+1

𝑡𝑑 , i.e., 𝐹 𝑖+1
𝑡𝑑 = 𝑅𝑖(𝐹 𝑖

𝑡𝑑 , 𝐹
𝑖
𝑏𝑢). The

kip connection layer has a residual bottleneck architecture (He et al.,
016) and downsamples the low-level features to produce a new feature
ap with 96 channels 𝐹 𝑖

𝑏𝑢. The refinement module 𝑅𝑖 works by first
oncatenating 𝐹 𝑖

𝑡𝑑 and 𝐹 𝑖
𝑏𝑢 and then feeding them to another 3 × 3 con-

olutional layer with 128 channels. Finally, an upsampling operation
s optionally performed to guarantee that 𝐹 𝑖

𝑡𝑑 and 𝐹 𝑖
𝑏𝑢 have the same

patial resolution. Note that the output feature of the last refinement
odule 𝑅3 is upsampled to the original resolution of the input image

efore being fed into a convolutional layer with 256 kernels for further
efinement and produce a saliency probability map.

.2.4. Multiscale refinement network training
We train two models based on the same multiscale refinement net-

ork architecture to perform two subtasks, i.e., salient region detection
nd salient object contour detection. We train the models on these
wo subtasks with separate training sets. As the number of training
amples for salient contour detection is much smaller, in practice, we
irst train a network for salient region detection. Then, a duplicate of
his trained network is further fine-tuned for salient contour detection.
s the number of ‘‘salient object region/contour’’ and ‘‘non-salient-
bject-region/contour’’ pixels are imbalanced in each training batch,
specially for salient object contour detection, we use a class-balanced
ross-entropy function (Xie and Tu, 2015) as the loss function, which
an be formulated as follows:

= −𝛽
∑

𝑗∈𝑌+

log𝑃𝑗 − (1 − 𝛽)
∑

𝑗∈𝑌−

log(1 − 𝑃𝑗 ), (1)

where 𝛽 = |𝑌−|∕|𝑌 | and 1 − 𝛽 = |𝑌+|∕|𝑌 |. 𝑌+ and 𝑌− denote the salient
and non-salient ground truth label sets, respectively. 𝑃𝑗 = 𝜎(𝑎𝑗 ) ∈
[0, 1] denotes the probability of that pixel 𝑗 belongs to salient object
region/contour using sigmoid function 𝜎(.) on the activation value
at pixel 𝑗. When training MSRNet for salient region detection, the
parameters of the backbone are initialized with an ImageNet (Deng
et al., 2009) pre-trained ResNet-50. The parameters of the upsampling
operation are initialized with bilinear interpolation weights. The pa-
rameters of the rest convolutions in the top-down refinement stream are
initialized with random values sampled from a normal distribution with
a mean of zero and a standard deviation of 0.01. The model is trained
by an Adam (Kingma and Ba, 2014) optimizer with an initializing
learning rate of 1e−5.

3.3. Salient instance proposal

In the earlier version of this paper (Li et al., 2017), we proposed to
use the multiscale combinatorial grouping (MCG) algorithm (Arbeláez
et al., 2014) to generate salient instance proposals from the detected
salient object contours. However, MCG generates numerous proposals,
which is very time consuming and is also difficult to filter out the
5

noisy ones. Moreover, the lack of consideration on the detected salient
region results in the inconsistency of salient instance proposals and
detected salient regions. In this section, we propose a simple yet
effective morphology algorithm to generate salient instance proposals
by using salient object contour to separate occluded salient regions.
Here, we define the salient instance proposals as a set of box-level
object proposals, which is denoted as 𝑃𝑏𝑏𝑜𝑥.

Specifically, for an input image, it is fed into the salient region
etection network and salient object contour detection network based
n MSRNet to generate salient region map and salient object contour
ap, respectively. And we perform binary classification on its detected

alient region map and salient object contour map via simple thresh-
ld strategy (threshold is set to 0.5). The binary salient region map
nd binary salient object contour map are denoted as 𝑅𝑏 and 𝐶𝑏,
espectively.

Next, we compute the connected components of 𝑅𝑏, which stand
or disconnected salient regions and are denoted as 𝐶𝐶𝑅𝑏 = {𝑐𝑐1, 𝑐𝑐2,
… , 𝑐𝑐𝑛} (n is the number of connected components in 𝑅𝑏). Meanwhile,
we filter out the tiny noisy connected components caused by threshold
(smaller than 1∕20 of the area of the largest connected component in
𝐶𝐶𝑅𝑏).

Then, we use the binary salient contour map 𝐶𝑏 to separate oc-
luded salient region 𝑅𝑏. It works by finding the pixels that are active

in both salient region map and salient object contour map, and sup-
pressing the corresponding pixels in the binary salient region map 𝑅𝑏
to generate a new salient region map 𝑅𝑑, i.e.,

𝑅𝑑 = 𝑅𝑏 − (𝑅𝑏 ∩ 𝐶𝑏). (2)

After the above preparation, we traverse each connected component
of 𝐶𝐶𝑅𝑏. The 𝑖th connected component of 𝐶𝐶𝑅𝑏 and the corresponding
region in 𝑅𝑑 of its bounding box are denoted as 𝐶𝐶𝑖 and 𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)],
espectively. For 𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)], we further compute its connected com-
onents, which are denoted as 𝐶𝐶𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)] = {𝑐𝑐𝑖−1, 𝑐𝑐𝑖−2,… , 𝑐𝑐𝑖−𝑚}
𝑚 is the number of the connected components in 𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)]). To
nsure the consistency of detected salient region and salient object con-
our, we discard the connected components in 𝐶𝐶𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)] that have
o salient contour pixels inside. We also discard tiny noisy connected
omponents generated in the process of separating salient regions with
alient object contour (smaller than 1∕10 of the area of the largest
onnected component in 𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)]).

After the filtering, if the number of left connected components in
𝐶𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)] is not more than one, the bounding box of 𝑐𝑐𝑖, i.e.,
𝐵𝑜𝑥(𝑐𝑐𝑖), will be added to the set of salient instance proposals 𝑃𝑏𝑏𝑜𝑥.
therwise, if the number is more than one, the aligned bounding box
f each connected component of 𝐶𝐶𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)], i.e., 𝐴𝐵𝐵𝑜𝑥(𝑐𝑐𝑖−𝑗 ) (𝑗
enotes the 𝑗th connected component of 𝐶𝐶𝑅𝑑[𝐵𝐵𝑜𝑥(𝑐𝑐𝑖)]), will be added
o 𝑃𝑏𝑏𝑜𝑥.

Here, we define 𝐴𝐵𝐵𝑜𝑥(𝑐𝑐𝑖−𝑗 ) as the aligned bounding box of the
onnected component 𝑐𝑐𝑖−𝑗 . Since this process of generating 𝑅𝑑 brings
etails loss for salient regions, the bounding box of 𝑐𝑐𝑖−𝑗 can only
oughly locate the salient instance. Thus, we need to further consider
he context of 𝑐𝑐𝑖−𝑗 from the binary salient region 𝑅𝑏. The proposed
ligned bounding box is computed by first extending the width and
eight of 𝐵𝐵𝑜𝑥(𝑐𝑐𝑖−𝑗 ) by 5%. Then, if the distance of the edge of the
xtended bounding box to that of 𝐵𝐵𝑜𝑥(𝑐𝑐𝑖) is less than five pixels, the
dge of the extended bounding box will be aligned to that of 𝐵𝐵𝑜𝑥(𝑐𝑐𝑖).

We call each of the salient instance proposals in 𝑃𝑏𝑏𝑜𝑥 a detected
alient instance. We can easily obtain an initial result for salient in-
tance segmentation by labeling the pixels in each salient instance with
unique instance id. A visualization illustration for an example image

s present in Fig. 6 to better illustrate the process of generating salient
nstance proposals.
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Fig. 6. Visualization illustration of our proposed algorithm for salient instance proposal generation. Please refer to Section 3.3 for more detailed description.
Fig. 7. Comparison of precision–recall curves among 15 representative salient region detection methods (instance-agnostic) on three datasets.
.4. Refinement for salient instance segmentation

Since there exists losses of details in the processing of generating
alient instance proposals, the initial salient instance segmentation re-
ults could be incomplete or have overlap. In this section, we introduce
fully connected CRF-based model to refine the initial salient instance

egmentation results.
Suppose the number of salient instances is 𝐾. We consider the

salient instance segmentation as a multi-class labeling problem. In the
end, each pixel is assigned with one of the 𝐾 + 1 labels using a CRF
model. To achieve this goal, we first define a probability map with
𝐾 +1 channels for each input image. Each spatial location of a channel
corresponds to the probability that it belongs to the corresponding
class of the channel. Here, we treat the background as the first class
corresponding to the first channel of the probability map and treat the
𝑘th instance as the (𝑘+1)th class corresponding to the (𝑘+1)th channel
of the probability map. Base on the binary salient region map, we define
a few rules to generate the probability map as follows:
6

• For a binary salient region map, the pixels with values equal to 1
are regarded as salient region pixels and those with values equal
to 0 are regarded as background pixels.

• If a salient region pixel is covered by a single salient instance
(box-level), the probability of this pixel on the channel associated
with the salient instance is 1 and is 0 on all other channels.

• If a salient region pixel is not covered by any detected salient
instances (box-level), the probability of this pixel on the channel
of background is 0 and is 1

𝐾 on all other channels.
• If a salient region pixel is covered by 𝑘 overlapping salient in-

stances (box-level), the probability of this pixel on the channels
associated with these salient instances is 1

𝑘 and is 0 on other
channels.

• If a background pixel is covered by 𝑘 overlapping salient instances
(box-level), the probability of this pixel on the channels associ-
ated with these salient instances as well as on the channel of
background is 1

𝑘+1 and is 0 on other channels.

Given this initial salient instance probability map, we employ a fully
connected CRF model (Krähenbühl and Koltun, 2011) for refinement.
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Fig. 8. Visual comparison of the saliency maps generated by state-of-the-art methods, including our conference version and new version of MSRNet. The ground truth (GT) is
shown in the last column. We select these images from various challenging cases into multiple groups and highlight the features of images in each group.

Fig. 9. Ablation study on different components of our proposed multiscale refinement network for salient region detection (instance-agnostic) using F-measure curves.

7
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Fig. 10. Failure examples of salient instance segmentation generated by our proposed
method.

Table 1
Statistics of our new datasets for salient instance segmentation.

Dataset #Images Split # Object Instances

# Train # Validation # Test 1 2 3 ⩾4

ILSO-1K 1,000 500 200 300 154 504 244 98
Extended 1,000 500 200 300 143 453 231 173
ILSO-2K 2,000 1,000 400 600 297 957 475 271

# indicates the number of images.

Specifically, pixel labels are optimized with respect to the following
energy function of the CRF:

𝐸 (𝑥) = −
∑

𝑖
log𝑃

(

𝑥𝑖
)

+
∑
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, (3)
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(4)

where 𝜇
(

𝑥𝑖, 𝑥𝑗
)

= 1 if 𝑥𝑖 ≠ 𝑥𝑗 , and zero otherwise. 𝜃𝑖𝑗 involves two
kernels. The first bilateral kernel depends on both pixel positions (𝑝)
and pixel intensities (𝐼), suggesting adjacent pixels with similar colors
to take similar salient instance labels, while the second kernel only
depends on the pixel positions when enforcing smoothness. The degree
of color similarity and pixel closeness are respectively controlled by
two hyper-parameters, 𝜎𝛼 and 𝜎𝛽 . 𝜎𝛾 controls the scale of the Gaussian
kernel. In this paper, we apply the publicly available implementation
of Krähenbühl and Koltun (2011) to minimize the above energy. In
our experiments, the hyper-parameters are determined through cross-
validation using the validation set of our dataset introduced in the next
section. The actual values of 𝑤1, 𝑤2, 𝜎𝛼 , 𝜎𝛽 and 𝜎𝛾 are set to 4.0, 3.0,
49.0, 5.0 and 3.0, respectively.

4. New benchmarks for salient instance segmentation

Since salient instance segmentation was a completely new problem
proposed in the preliminary version of this paper (Li et al., 2017),
none of the existing datasets could be directly applied to this problem
8

at that time. To promote the study of this problem, we built a new
dataset with pixel-wise salient instance annotations in our preliminary
version. This new dataset contains 1000 images that are mostly from
existing datasets for salient region detection, including ECSSD (Yan
et al., 2013), DUT-O (Yang et al., 2013), HKU-IS (Li and Yu, 2015),
and MSO (Zhang et al., 2016) datasets. High-quality pixel-wise salient
instance labeling and salient object contour are provided for each
image. The dataset is divided into three parts, including 500 images
for training, 200 images for validation, and 300 images for testing.

In this paper, we further extend the scale of the existing dataset with
more challenging samples for salient instance segmentation. In order to
distinguish between the dataset in the preliminary version of this paper
and the extended dataset in this paper, we name the former ILSO-1K
and the latter ILSO-2K. For ILSO-2K, we collected another 1,246 non-
copyrighted images from the Internet, most of which contain multiple
salient object instances, complex background, or low color contrast.
To reduce the label inconsistency, we asked three people to annotate
the salient regions with different instance IDs in all selected images
using a custom-designed interactive segmentation tool. Only the images
with consistent salient instances labeling by all the three annotators
are remained. Based on the high-quality salient instance segmentation
labels, we can generate the salient instance contours for each image.
In the end, another 1000 images with pixel-wise salient object instance
labels as well as salient object contour labels are produced to extend
the salient instance dataset. The new 1000 images are also randomly
divided into three parts, including 500 images for training, 200 images
for validation, and 300 images for testing.

In summary, as shown in Table 1, the combination of these new
1000 images and ISLO-1K becomes our new dataset ILSO-2K, which in
total has 1000 images for training, 400 images for validation, and 600
images for testing. Moreover, the number of images that have more
than 4 salient object instances in the extended 1000 images (173) is
larger than that in ILSO-1K (98), which indicates the increment of
difficulty in the extended dataset ILSO-2K.

5. Experiments and analyses

5.1. Implementation details

Our proposed MSRNet has been implemented on the MXNet (Chen
et al., 2015), a flexible and efficient deep learning platform. For salient
region detection, we utilize the training set of DUTS (DUTS-TR) (Wang
et al., 2017b) to train our MSRNet. Here, we do not use any validation
set and train the model until its training loss converges. To relieve the
overfitting when training, we augment the training set by randomly
rotating (−10◦ to 10◦), horizontal flipping, and randomly cropping. A
workstation with an NVIDIA GTX Titan X GPU and a 2.1 GHz Intel CPU
is used for training and testing. It takes about 13 h for our model to
converges after 40 epochs on salient region detection. As discussed in
Section 3.2.4, this trained model is used as the initial model for salient
object contour detection. Since our new dataset ILSO-2K contains only
1000 training images, we perform data augmentation as we used for
salient region detection. We fine-tune a duplicated MSRNet on the
training set of ILSO-2K for 200 epochs, which takes about 7 h, and
keep the lowest validation error on the validation set of ILSO-2K (400
images) as our final model for salient object contour detection.

The batch size is set to 8 on the training phase and set to 32 on
the test phase. The input image is resized to 320 × 320. During testing,
the final saliency map is resized to the original resolution of the input
image. As MSRNet is a fully convolutional network, the inference stage
is very efficient.
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(smaller is better). The top three results on each dataset are
(FPS) and the number of trainable parameters (#Params(M))

ECSSD SOD

𝑚 MAE 𝐹𝑚𝑎𝑥
𝛽 𝑆𝑚 MAE 𝐹𝑚𝑎𝑥

𝛽 𝑆𝑚 MAE

786 .092 .837 .803 .101 .731 .650 .181
810 .129 .832 .776 .105 .787 .679 .159
858 .079 .890 .852 .107 .799 .730 .170
820 .074 .867 .839 .079 .764 .705 .155
819 .072 .890 .828 .088 .823 .735 .141
870 .053 .907 .884 .059 .827 .750 .128
883 .052 .915 .894 .059 .806 .758 .141
866 .074 .911 .883 .078 .803 .754 .164
887 .046 .917 .895 .054 .843 .742 .127
879 .041 .916 .882 .052 .844 .751 .121
887 .045 .921 .893 .056 .850 .764 .124
891 .038 .931 .900 .046 .836 .732 .136
887 .048 .927 .889 .061 .839 .720 .145
895 .036 .922 .903 .041 .845 .771 .104
907 .038 .930 .918 .041 .824 .800 .103
906 .039 .928 .911 .045 .854 .790 .107
877 .042 .925 .888 .052 .821 .709 .137
902 .038 .919 .907 .047 .854 .775 .115

/a n/a .911 .896 .054 .836 .779 .113
901 .046 .937 .912 .048 .862 .801 .101

9

Table 2
Comparison of quantitative results for salient region detection (instance-agnostic) using maximum F-measure 𝐹𝑚𝑎𝑥

𝛽 (larger is better), S-measure 𝑆𝑚 (larger is better), and MAE
shown in red, blue, and green, respectively. ‘‘MK‘‘ denotes MSRA10K (Cheng et al., 2015), and ‘‘MB’’ denotes MSRA-B (Liu et al., 2011). We also report the inference speed
of each model.

Methods FPS #Params(M) Training DUTS-TE PASCAL-S DUT-O HKU-IS

Dataset #Images 𝐹𝑚𝑎𝑥
𝛽 𝑆𝑚 MAE 𝐹𝑚𝑎𝑥

𝛽 𝑆𝑚 MAE 𝐹𝑚𝑎𝑥
𝛽 𝑆𝑚 MAE 𝐹𝑚𝑎𝑥

𝛽 𝑆

MC (Zhao et al., 2015) – – MK 8,000 .672 .712 .106 .743 .719 .145 .701 .752 .089 .808 .
MDF (Li and Yu, 2015) .04 75.68 MB 2,500 .730 .732 .094 .768 .692 .146 .694 .721 .092 .861 .
RFCN (Wang et al., 2016a) 15 53.00 MK 10,000 .777 .793 .091 .837 .808 .118 .742 .774 .111 .892 .
ELD (Lee et al., 2016) – – MK 9,000 .738 .753 .093 .773 .757 .123 .715 .750 .092 .839 .
DCL (Li and Yu, 2016) 13 66.31 MB 2,500 .782 .735 .088 .805 .754 .125 .739 .713 .097 .885 .
DHS (Liu and Han, 2016) 22 62.22 MK+DUT-O 9,500 .807 .817 .067 .829 .807 .094 n/a n/a n/a .890 .
Amulet (Zhang et al., 2017a) 19 33.15 MK 10,000 .778 .803 .085 .837 .820 .098 .742 .780 .098 .895 .
UCF (Zhang et al., 2017b) 23 29.43 MK 10,000 .771 .778 .117 .828 .803 .126 .734 .758 .132 .886 .
SRM (Wang et al., 2017a) 35 53.18 DUTS 10,533 .827 .834 .059 .847 .832 .085 .769 .797 .069 .906 .
DSS (Hou et al., 2017) 22 62.23 MB 2,500 .825 .822 .057 .836 .797 .096 .771 .788 .066 .910 .
RAS (Chen et al., 2018) 43 20.23 MB 2,500 .831 .839 .060 .837 .795 .104 .786 .814 .062 .913 .
R3Net (Deng et al., 2018) 29 56.16 MK 10,000 .828 .829 .059 .845 .800 .097 .792 .815 .061 .917 .
PAGR (Zhang et al., 2018) – – DUTS 10,533 .855 .837 .056 .856 .818 .093 .771 .775 .071 .918 .
DGRL (Wang et al., 2018b) 5 166.08 DUTS 10,533 .829 .841 .050 .854 .836 .072 .774 .806 .062 .910 .
PS (Wang et al., 2019b) – – MK 10,000 .855 .864 .049 .864 .850 .071 .813 .837 .061 .913 .
MLMSNet (Wu et al., 2019a) 13 74.38 DUTS+BSDS 10,533+300 .851 .861 .049 .862 .845 .074 .774 .809 .064 .921 .
HRSOD-DH (Zeng et al., 2019) 20 32.39 DUTS+HRSOD 12,163 .836 .822 .051 .854 .812 .083 .743 .763 .065 .910 .
TSPOANet (Liu et al., 2019b) – – DUTS 10,533 .850 .859 .049 .861 .841 .078 .784 .818 .061 .919 .

MSRNet (Li et al., 2017) 9 82.91 MB+HKU-IS 5,000 .829 .840 .061 .855 .840 .081 .782 .808 .073 n/a n
MSRNet 37 59.56 DUTS 10,533 .869 .868 .052 .871 .851 .075 .799 .819 .070 .922 .

‘‘n/a’’: Training on subset. Corresponding test results are excluded here.
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is better), S-measure 𝑆𝑚 (larger is better), weighted F-measure

2013) ECSSD (Yan et al., 2013)
𝑤
𝛽 MAE 𝐹𝑚𝑎𝑥

𝛽 𝑆𝑚 𝐹𝑤
𝛽 MAE

.456 0.129 0.911 0.791 0.650 0.116

.611 0.082 0.917 0.892 0.814 0.064

.648 0.079 0.930 0.903 0.838 0.055

.675 0.070 0.937 0.912 0.861 0.048

10
Table 3
Ablation study on different components of our proposed multiscale refinement network for salient region detection (instance-agnostic) using maximum F-measure 𝐹𝑚𝑎𝑥

𝛽 (larger
𝐹𝑤
𝛽 (larger is better), and MAE (smaller is better). The best scores marked in bold.

Methods Refinement ASPP DUTS-TE (Wang et al., 2017b) PASCAL-S (Li et al., 2014) DUT-O (Yang et al.,

w/o attention w/ attention 𝐹𝑚𝑎𝑥
𝛽 𝑆𝑚 𝐹𝑤

𝛽 MAE 𝐹𝑚𝑎𝑥
𝛽 𝑆𝑚 𝐹𝑤

𝛽 MAE 𝐹𝑚𝑎𝑥
𝛽 𝑆𝑚 𝐹

𝑀𝑎 0.825 0.698 0.492 0.111 0.841 0.738 0.582 0.141 0.754 0.671 0
𝑀𝑏 ✓ 0.848 0.847 0.692 0.063 0.847 0.828 0.722 0.092 0.772 0.798 0
𝑀𝑐 ✓ ✓ 0.861 0.856 0.723 0.060 0.859 0.837 0.747 0.086 0.787 0.807 0
𝑀𝑑 ✓ ✓ 0.869 0.868 0.751 0.052 0.871 0.851 0.779 0.075 0.799 0.819 0
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5.2. Evaluation on salient region detection

5.2.1. Datasets
To evaluate the performance of our MSRNet on salient region

detection, we conduct testing on six benchmark datasets, including
DUTS (Wang et al., 2017b), PASCAL-S (Li et al., 2014), DUT-O (Yang
et al., 2013), HKU-IS (Li and Yu, 2015), ECSSD (Yan et al., 2013),
and SOD (Movahedi and Elder, 2010). These datasets contain a large
number of images as well as pixel-wise salient region annotations and
have been widely used for salient region detection.
DUTS (Wang et al., 2017b). This dataset contains 10,533 images in the
training set, i.e., DUTS-TR, and 5,019 images in the test set, i.e., DUTS-

E. It is currently the largest image salient object detection benchmark,
hich contains various challenging scenarios for saliency detection.
he pixel-wise ground truth saliency masks were annotated by 50
ubjects.
ASCAL-S (Li et al., 2014). This dataset contains 850 natural images,
ach of which contains multiple objects and is from the validation set
f PASCAL VOC 2010 segmentation dataset. The ground truth saliency
asks were labeled by 12 subjects. The final saliency value of each

bject is the proportion of being labeled as saliency by the subjects.
ere, we binarize the masks at a threshold of 0.5 to obtain binary

aliency masks as suggested by Li et al. (2014).
UT-O (Yang et al., 2013). This dataset contains 5,168 natural images,
here both bounding boxes and pixel-wise salient object annotations
re provided. Through a careful observation of this dataset, we have
oticed that many saliency annotations in this dataset are ambiguous
o different human observers. As a consequence, none of the existing
alient object detection methods have achieved high accuracy on this
ataset.
KU-IS (Li and Yu, 2015). This dataset contains 4,447 images with
igh-quality pixel-wise annotation of salient objects. Only the im-
ges with low color contrast, complex background, or multiple salient
bjects were chosen to construct this dataset.
CSSD (Yan et al., 2013). This dataset contains 1000 semantically
eaningful and structurally complex images with pixel-wise annota-

ions.
OD (Movahedi and Elder, 2010). This dataset contains 300 images
ith salient object boundaries based on the Berkeley Segmentation
ataset. Pixel-wise annotations of the salient objects in this dataset
ere generated by Jiang et al. (2013). Many images in this dataset

ontain multiple salient objects with low contrast that makes this
ataset more challenging.

The performance of MSRA-B (Cheng et al., 2015) dataset, which
s reported in the earlier version of this paper (Li et al., 2017), is no
onger discussed here as it is relatively simple and has achieved very
igh performance. Noted that as we train our network on the training
et of DUTS (DUTS-TR), we evaluate our trained model on the test set of
UTS (DUTS-TE) as well as the entire dataset of all other benchmarks.

.2.2. Evaluation criteria
We adopt precision–recall curves (PR), F-measure (Achanta et al.,

009), S-measure (Fan et al., 2017), mean absolute error (MAE) (Per-
zzi et al., 2012), and weighted F-measure (Margolin et al., 2014) to
valuate the performance of MSRNet as well as other state-of-the-art
alient region detection methods.
R curves can be obtained by taking the average of precision and
ecall values of all images in each dataset and connecting the pairs
f average precision and average recall values at different thresholds
[0,255]). Specifically, a pair of Precision and Recall value can be
btained by comparing the ground truth saliency map with the saliency
ap binarized at a certain threshold, which is defined as:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

,𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (5)

where TP, TN, FP, FN denote true-positive, true-negative, false-positive,
and false-negative, respectively.
11
F-measure (Achanta et al., 2009) indicates an overall performance at
different thresholds ([0,255]), which can be formulated as a weighted
combination of precision and recall:

𝐹𝛽 =
(1 + 𝛽2) ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (6)

where 𝛽2 is set to 0.3 to weight precision more than recall as suggested
by Achanta et al. (2009). We report the whole F-measure curve and also
the maximum F-measure, which provides a summary of salient object
detection performance.
S-measure (Fan et al., 2017) can evaluate region-aware (𝑆𝑟) as well as
object-aware (𝑆𝑜) structural similarity between a saliency map and its
corresponding ground truth simultaneously:

𝑆𝑚 = 𝛼 × 𝑆𝑜 + (1 − 𝛼) × 𝑆𝑟, (7)

where 𝛼 is empirically set to 0.5.
MAE (Perazzi et al., 2012) measures the average pixelwise absolute
difference between the binary ground truth 𝐺𝑇 ∈ {0, 1}𝑊 ×𝐻 and
predicted saliency map 𝑆 ∈ [0, 1]𝑊 ×𝐻 :

MAE = 1
𝑊 ×𝐻

𝑊
∑

𝑥=1

𝐻
∑

𝑦=1
|𝑆(𝑥, 𝑦) − 𝐺𝑇 (𝑥, 𝑦)|. (8)

Weighted F-measure (Margolin et al., 2014) alters the way of com-
puting F-measure by replacing the Precision and Recall with weighted
Precision (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤) and weighted Recall (𝑅𝑒𝑐𝑎𝑙𝑙𝑤):

𝐹𝑤
𝛽 =

(1 + 𝛽2) ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙𝑤

𝛽2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑤
. (9)

5.2.3. Comparison with state-of-the-art
For salient region detection, we compare the proposed MSRNet with

other 19 state-of-the-art salient region detection methods, including
MC (Zhao et al., 2015), MDF (Li and Yu, 2015), RFCN (Wang et al.,
2016a), ELD (Lee et al., 2016), DCL (Li and Yu, 2016), DHS (Liu
and Han, 2016), Amulet (Zhang et al., 2017a), UCF (Zhang et al.,
2017b), SRM (Wang et al., 2017a), DSS (Hou et al., 2017), RAS (Chen
et al., 2018), R3Net (Deng et al., 2018), PAGR (Zhang et al., 2018),
DGRL (Wang et al., 2018b), PS (Wang et al., 2019b), MLMSNet (Wu
et al., 2019a), HRSOD-DH (Zeng et al., 2019), TSPOANet (Liu et al.,
2019b), and MSRNet in our conference version (Li et al., 2017). We
use the saliency maps provided by the authors or computed using their
released implementations for comparison.

As a part of quantitative evaluation, a comparison of PR curves on
three benchmark datasets is presented in Fig. 7. Moreover, a quan-
titative comparison using maximum F-measure, S-measure, and MAE
on six benchmark datasets is given in Table 2. As can be seen, our
proposed MSRNet achieves stably and satisfactory performance when
compared to state-of-the-art salient region detection (instance-agnostic)
methods without resorting to any post-processing techniques or edge
labels. More specially, our proposed network performs best w.r.t S-
measure, which indicates that the proposed network can generate
salient region maps with high region-aware and object-aware structural
similarity compared to the ground truth. Besides, as shown the in last
two columns in Table 2, our new MSRNet consistently outperforms
our conference version by a large margin across all the six benchmark
datasets.

A visual comparison is given in Fig. 8. Due to space limitation,
we select 9 representative methods to compare with our new version
of MSRNet. As can be seen, although some of the state-of-the-art
methods perform well in some challenging cases, they still fail to handle
other complex cases. By contrast, our redesigned MSRNet can promote
the performance of its conference version and accurately detect the
salient objects in various challenging scenarios, e.g., low color contrast
between salient objects and background (the first two rows), salient
objects with complex texture (3rd and 4th rows), multiple salient
objects (5th to 8th rows), objects touching the image boundary (7th

row), and small salient object (the last four rows).
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Table 4
Comparison of quantitative results for salient instance segmentation (instance-level) on the test sets of ILSO-1K and ILSO-2K. Please note that the models reported on each dataset
(ILSO-1K, ILSO-2K) are trained on its corresponding training (500 images for ILSO-1K, 1000 images for ILSO-2K) and validation (200 images for ILSO-1K, 400 images for ILSO-2K)
sets.

Method Pub. ILSO-1K (Li et al., 2017) ILSO-2K

𝑚𝐴𝑃 𝑟@0.5 𝑚𝐴𝑃 𝑟@0.6 𝑚𝐴𝑃 𝑟@0.7 𝑚𝐴𝑃 𝑟@0.8 𝑚𝐴𝑃 𝑟@0.9 𝑚𝐴𝑃 𝑟@0.5 𝑚𝐴𝑃 𝑟@0.6 𝑚𝐴𝑃 𝑟@0.7 𝑚𝐴𝑃 𝑟@0.8 𝑚𝐴𝑃 𝑟@0.9

Ours (Li et al., 2017) CVPR’17 65.32% – 52.18% – – – – – – –
S4Net (Fan et al., 2019b) CVPR’19 82.84% 78.88% 71.62% 57.26% 23.27% 73.11% 64.22% 52.98% 34.09% 11.90%
Ours 85.15% 81.68% 74.75% 64.19% 37.29% 78.32% 73.70% 66.57% 55.55% 29.10%
Fig. 11. Examples of salient instance segmentation results generated by our redesigned MSRNet-based framework on the ILSO-2K dataset. For each image, we show the ground
truth of salient instance segmentation, the detected salient region map, the detected salient object contour, and the predicted salient instance segmentation result. Moreover, we
also provide the salient instance segmentation results of S4Net (Fan et al., 2019b) for qualitative comparison. Note that for salient instance segmentation, different colors indicate
different salient object instances. Best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5.2.4. Effectiveness of multiscale refinement network
As discussed in Section 3.2, our proposed MSRN consists of a refined

ResNet-50 stream and a learned attentional ASPP for fusing features
at different scales. To validate the effectiveness and necessity of each
component, we compare MSRNet with its three variants in Table 3
and Fig. 9. Specifically, 𝑀𝑎 refers to a modified ResNet-50 backbone
network without any refinement architecture. 𝑀𝑏 refers to a ResNet-50-
ased refinement network. 𝑀𝑐 refers to a ResNet-50-based refinement
etwork with a vanilla ASPP module. 𝑀𝑑 refers to our proposed
SRNet, a ResNet-50-based refinement network with an attentional
SPP module. These three variants are trained using the same strategy
s training MSRNet. Quantitative results from the four methods are
btained from the test set of DUTS and the whole dataset of PASCAL-S,
UT-O, and ECSSD. As shown in Table 3 and Fig. 9, MSRNet consis-
ently achieves the best performing in terms of maximum F-measure,

12
S-measure, and F-measure curve. By comparing 𝑀𝑏 with 𝑀𝑎, we can
find that the refinement architecture brings a significant improvement
on all metrics, especially on weighted F-measure, which demonstrates
the effectiveness of the refinement module in MSRNet. By comparing
𝑀𝑐 and 𝑀𝑑 with 𝑀𝑏, we can find that on the basis of refinement
architecture, the ASPP module can bring extra performance boost w.r.t
maximum F-measure, S-measure, weighted F-measure, and MAE as it
can help the model to detect salient objects at multiple scales in a
same feature level. The better performance of 𝑀𝑑 further demonstrates
the effectiveness of our proposed attention model for fusing features
at different scales in ASPP. Moreover, the refinement architecture and
the attentional ASPP are complementary to each other, which makes
MSRNet capable of detecting salient regions more precisely as well as

discovering salient objects at multiple scales.
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5.3. Evaluation on salient instance segmentation

We adopt two types of performance measures to evaluate the per-
formance of our proposed framework for instance-level salient object
segmentation.

First, we use the same performance measures as traditional edge
detection (Arbelaez et al., 2011; Xie and Tu, 2015) to evaluate the per-
formance of salient object contour detection, i.e., three standard mea-
sures: fixed contour threshold (ODS), per-image best threshold (OIS),
and average precision (AP). Second, we define performance measures
for salient instance segmentation by drawing inspirations from the
evaluation of instance-aware semantic segmentation (Hariharan et al.,
2014). Specifically, we adopt mean average precision using region IoU
(intersection-over-union) at different thresholds (0.5, 0.6, 0.7, 0.8, and
0.9), which are denoted as 𝑚𝐴𝑃 𝑟@𝑋,𝑋 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

.3.1. Quantitative evaluation
Quantitative benchmark results of salient object contour detec-

ion and salient instance segmentation are given in Tables 4 and 5,
espectively. Here, we report the results on both ILSO-1K and ILSO-
K datasets. Please note that the reported results on ILSO-1K and
LSO-2K are produced by the models trained on the training and
alidation sets of ILSO-1K and ILSO-2K, respectively. As can be seen,
ur proposed salient instance segmentation framework improves the
𝐴𝑃 𝑟@0.5 achieved by our preliminary version by 30.36% and im-
roves 𝑚𝐴𝑃 𝑟@0.7 by 43.25% on the test set of ISLO-1K.

Moreover, we also provide a detailed comparison with the state-
f-the-art salient instance segmentation algorithm S4Net (Fan et al.,
019b) on both ILSO-1K and ILSO-2K datasets. Here, we use the
ublished implementation of S4Net trained on ILSO-1K to generate the
est results of ILSO-1K. And we also re-train the S4Net on ILSO-2K to
enerate the test results of ILSO-2K using the default settings provided
y the authors. As shown in Table 4, our redesigned pipeline for salient
nstance segmentation consistently outperforms S4Net w.r.t 𝑚𝐴𝑃 𝑟 with
oU scores of 0.5 to 0.9 on both ILSO-1K and ILSO-2K datasets by a
arge margin.

.3.2. Qualitative evaluation
Fig. 11 presents a visualization of the salient region maps, salient

ontour maps, and salient instance segmentation maps generated by
ur redesigned pipeline. Moreover, the salient instance segmentation
esults of S4Net are also provided for better comparison. As shown in
he figure, S4Net might fail to segment some spatially connected objects
2nd row) or produce inaccurate candidates (6th row). Moreover, the
ask-level results of S4Net are usually rough especially around object

oundaries (3rd and 5th rows). By contrast, our proposed MSRNet can
ot only detect the salient region accurately but also distinguish the
ontour of salient instances correctly. Based on the detected salient
egion and contour, our framework can handle challenging scenarios
here multiple salient object instances are spatially connected.

.4. Run-time analysis

In Table 6, we provide a detailed run-time analysis of our proposed
ipeline for salient instance segmentation, including the salient region
etection (SRD), salient object contour detection (SOCD), and salient
nstance segmentation (SIS). In our experiments, all timings are mea-
ured on a workstation with an NVIDIA GTX Titan X GPU and a 2.1 GHz
ntel CPU. The pipeline of our preliminary version (Li et al., 2017)
akes about 113 ms to generate a salient region/contour map via the
reliminary version of MSRNet and another 437 ms for post-processing
ia CRF (Krähenbühl and Koltun, 2011). Given the generated salient
egion and salient object contour maps, it takes about 4900 ms to
enerate salient instance proposals via MCG (Arbeláez et al., 2014)
nd another 1600 ms for the CRF-based refinement of salient instance
13
Table 5
Quantitative benchmark results of salient object contour detection on test sets of our
new dataset.

Method ILSO-1K ILSO-2K

ODS OIS AP ODS OIS AP

Ours (Li et al., 2017) 0.719 0.757 0.765 – – –
Ours 0.839 0.869 0.767 0.838 0.877 0.783

Table 6
Run-time analysis for the pipeline of salient instance segmentation, including our
preliminary version (Li et al., 2017) and redesigned version. As mentioned in Section 3,
the pipeline includes the MSRNet for salient region detection (SRD) and salient object
contour detection (SOCD), as well as salient proposal generation (Proposal) and salient
instance refinement (Refinement) for salient instance segmentation (SIS).

Method SRD/SOCD SIS Total Times

MSRNetCRF Proposal Refinement

Ours (Li et al., 2017)(Li et al., 2017)113 ms 437 ms4,900 ms1,600 ms 7,600 ms
Ours 27 ms – 10 ms 1,600 ms 1,664 ms

segmentation. In total, the pipeline of our preliminary version takes
about 7.6 s to perform salient instance segmentation for an input image.

While, as for the pipeline of our new version, it takes only about
27 ms to perform either salient region detection or salient object con-
tour detection for an input image via the redesigned MSRNet without
resorting to any post-processing techniques like CRF, which reaches
a real-time speed of 37 FPS. It takes about 10 ms to generate salient
instance proposals based on the generated salient region and contour
maps. The CRF-based refinement will take another 1600 ms with CRF
being the bottleneck for the refinement of the resulted salient instance
segmentation. In total, the redesigned pipeline takes about 1.7 s to
perform salient instance segmentation for an input image.

5.5. Failure analysis

Although our proposed pipeline can handle many challenging sit-
uations, it might still fail in some complex cases. Here, we visualize
some failure examples of salient instance segmentation generated by
our proposed pipeline in Fig. 10. Since our proposed salient instance
segmentation algorithm is based on the salient region and contour
maps generated by MSRNet, the salient instance segmentation is quite
sensitive to the quality of both salient region and contour maps. For
example, in Fig. 10, MSRNet fails to generate accurate salient region
maps for elongated objects (2nd row) and transparent objects (4th row),
which results in the failure of salient instance segmentation. Moreover,
it is also very difficult to precisely separate the spatially connected
salient objects, when there are complex object contours (1st rows),
severe object overlapping (3rd row), or multiple small salient objects
close to each other (5th row).

6. Conclusion

In this paper, we focus on a new problem proposed in the prelimi-
nary version of this paper, i.e., salient instance segmentation. To solve
this problem, we present a framework to combine the salient object
region and contour to generate instance-level salient object segmen-
tation. The essential component of our framework is the multiscale
refinement network, an end-to-end trained fully convolutional network
that is used to generate high-quality salient region masks and salient
object contours with high efficiency. To promote further research and
evaluation of salient instance segmentation, we have also extended
the scale of existing salient instance datasets bringing a new dataset
of 2,000 challenging images with pixel-wise salient instance anno-
tations. Experimental results demonstrate that our proposed method
can outperform its preliminary version by a large margin and achieve
satisfactory performance on six public benchmarks for salient object
region detection as well as on our new dataset for salient instance

segmentation.
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